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INTERPOLATION SETS 
FOR SUBALGEBRAS OF/ (Z) 

BY 

S. GLASNER AND B. WEISS 

A BS'I'R AC~I - 

Let ~.)I be the subalgebra of /~(Z) generated by the minimal functions. The 
collection of ?l-interpolation sets is identified as the ideal of small subsets of Z. 
General theorems about the relation between invariant ideals and collections of 
~/-interpolation sets, for subalgebras ,~ of l ~, are proven. 

w Introduction 

An ideal of subsets of the integers Z is a collection of subsets 3 ~ such that (i) A, 

B @ ,,~ implies A U B ~ or (ii) A E 3 ~ and B C A implies B E 3 ~, and (iii) Z ~ 3 ~. 

The ideal is said to be invariant if A (E~ iff A + 1 = {a + 1 : a E A}Eor  

For example,  the collections of finite sets, Sidon sets, and sets of density zero 

all form invariant ideals. The collection of sets A such that A D B - B implies 

that B is either finite or empty,  is an ideal (use Ramsey ' s  theorem) which is not 

invariant. 

Let f f  be the subaigebra of /=(Z) which consists of all Fourier transforms of 

measures on the circle. A subset A C Z is Sidon, if every bounded function on A 

can be extended to a function in ~ ;  i.e. if A is an interpolation set for ,~. The  

question, whether the collection 3~., of ~- in te rpola t ion  sets (Sidon sets) is an 

ideal, was answered affirmatively by Drury (1970). It is also known that one can 

replace ~ by its uniform closure in/~(Z),  when defining Sidon sets, i.e. ,~.~ = ~%. 

If one considers, on the other  hand, the algebra ~ C/| of almost  periodic 

functions and the corresponding collection ~% of ~- interpolat ion sets, it is then 

an easy result that this collection is not an ideal. In the positive direction again, it 

is shown in [6] that for the algebra ~ of almost automorphic  functions, ,9~ is an 

ideal. 

Given a norm closed translation invariant subalgebra ~ of /=(Z) containing 

the constant functions (in brief, an algebra), we say that  a subset A C Z is an 
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sO-interpolation set if every bounded real valued function on A can be extended 

to a function in ~r We write 5~.~, for the collection of all M-interpolation sets. 

The types of questions in which we are interested here are: 

(1) Given sO, is 5~.~ an ideal? 

(2) Given M, t:haracterize 5~. 

(3) Given an invariant ideal ~, is there an algebra sr for which 5~ = 5~?  

For previous work in this direction, we refer the reader to [6]. We now 

proceed to describe our main results. 

A function f ~ l~(Z) = l = is called minimal if Ve > 0, VF a finite subset of Z 
the set 

{n • Z : l f ( n  + i ) - f ( i ) l < e ,  Vi EF}  

is syndetic (i.e. has bounded gaps). (An equivalent condition is that the closure of 

the set of translates of f in the topology of pointwise convergence forms a 

minimal set.) 

The algebras g' and ~ of almost periodic and almost automorphic functions 

consist of minimal functions. Unlike those algebras the set ~ C l~(Z) of all 

minimal functions in l ~ does not form an algebra (neither sums nor products of 

minimal functions need be minimal). However, the family of maximal algebras 

of minimal functions can be parametrized by v E J, where J is the set of 

idempotents in a fixed minimal left ideal of/3 Z, the Stone-t~ech compactification 

of Z. We denote this family by {gd(v)}o~j and note that all algebras in this family 

are isometrically isomorphic. The smallest algebra containing ,//, or equivalently 

the algebra generated by all the 9d(v), will be denoted by 9~. We write 1A for the 

characteristic function of a set A. In particular lz is the function 0. 

A subset A C Z  is small if {l~}.is the unique minimal set in O(1A) in the flow 

(Da, or) where O.~ = {0, 1} z, tr is the shift on 1-12 and ~ stands for orbit closure. 

Equivalently A is small if for every k > 0 there exists an Nk > 0 such that in 

every interval of length Nk in Z there are k consecutive members of A", the 

complement of A. 

THEOREM 1. (1) Every set in~C~ is small. (2) Given a small set A CZ, there 

exists an algebra J of minimal functions such that A E 5~; thus, (3) 5~ 

coincides with the ideal of small sets. In particular 9~ ~ l =. 

The last assertion answers an old problem of Furstenberg. In [2] he was 

dealing with a restricted version of this problem to symbolic flows and 

conjectured that a similar situation presents itself in the general case. We will use 

his results in our proof of Theorem 1 (1). We do not know whether for a given 
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v G J the collection ~r is an ideal. The statement in [6; th. 5.1. (7)] "that  5~(o) 

is not an ideal follows from Veech's work [8]" is erroneous. 
If ~ is an ideal of subsets of Z then o~ = {A c : A E .,~} is a filter. Thus the set 

K = I'1 {A-~: A ES~}, where/~, for B CZ, denotes the closure of B in/3Z, is a 

non-empty closed subset of /3 Z . .9  is free if K does not contain points of Z 

(r M f f  = Q). An invariant ideal is clearly free. (In [6] the collection ~ = {A C 

Z ' A E  .~} was called a divisible property and the set K, the kernel of ,~.) 

Given an invariant ideal 5 ~ we let ~5(K) be the algebra of functions f E l ~ 

whose extension to /3Z does not distinguish between points of K. 

THEOREM 2. (1) Let ~ be an invariant ideal, then the following are 

equivalent: 

(a) 5 ~ = ~r 

(b) K does not contain isolated points. 

(2) In any case ~r C or and if they are not equal then for no algebra sg is it 

true that ~ = ~ .  

(3) There exists an invariant ideal for which K has an isolated point. 

In several concrete examples the condition (b) can be directly verified and thus 

we obtain 

COROLLARY. Each of the following invariant ideals is the ideal of interpolation 

sets of some algebra: 

(1) The ideal of small sets. 

(2) The ideal of sets A C Z with A M M ~  Q, where M is a fixed minimal left 

ideal in ~Z.  

(3) The ideal of sets A CZ with uniform zero density, i.e. 

lim 1 ~IA~j  =0.  

(In the terminology of [3] this property is called "upper Banach density zero".) 

We remark that an ideal .r can equal ~ for many different algebras M; e.g., 

for every separable algebra M, 5~.~ is the collection of finite sets. Another 

example is the equality {small sets} = 5~ = ~,~(K) where K = { U /~: M minimal 

ideal in /3Z}. 

Given a pointed flow (X, Xo, T), with ~(xo)= X, the mapping F---~f of C ( X )  

into l=(Z) given by f ( n ) =  F(Tnxo) is an isometric isomorphism. Conversely, 

starting with an algebra M Cl =, there is a pointed flow ([sr I, xo, T) with 

C(I M I) ~- sr under the above correspondence (I M I is the space of multiplica- 
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tive continuous functionals on ar xo : M --+ R is defined by xo(f) = f(0)). Let aq 

be an algebra and put 

~*(ar = {N(xo, V): V is a neighborhood of xo in I.~ / I} 

where N(x,,, V ) =  {n : T"x,, E V}. Let 

Ko= VI {P:F~o~(a~)}\{O}. 

Notice that when I s~l is infinite 

Ko = {p E [3 Z \ Z : pxo = Xo} 

and K o = ~ i f f s g = I L  
Put SO(sg) = {A C Z : V n  ~ Z ,  A + nf-I Ko= Q}. We recall, [6], that J~ is the 

topology on Z induced by the embedding n --+ T"xo of Z into I M [ and that ~ is 

the algebra of all J,,, continuous functions in IL We have s~ D,~ and ~ = 

thus 3~ = J~ and SO(.~) = SO(~/). 

THEOREM 3. (1) A E S~ iff A is J.,~ closed and discrete. 

(2) SO(M) C 5~.~. 

(3) SO(s~) D ~ in each of  the following cases : 

(i) ,ff as a subset of the Polonais space R z is Souslin. 

(ii) The collection .r is closed under union with finite sets. 

(iii) Ko has no isolated points. 

(4) Under any of  the conditions in (3) (with ~ replacing d )  ~ = SO(~). 

Notice that by [8], sg is Souslin iR ,~/ is Souslin. In checking case (3)(i) it is 

sometimes useful to consider the nature of J.# as a subset of f12. Our last result is 

connected with this question. 
A theorem of Sierpinski [7] implies that the collection of subsets of Z 

corresponding to neighborhoods of a point in flZ \ Z, i.e. a free ultrafilter on Z, is 

not a Souslin subset of 2 z = 112. In [8; 3.2.] Veech asks what can be said in this 

respect about the collection of subsets of Z which are neighborhoods of some 

minimal idempotent (or just idempotent) in f l Z \ Z .  

The notion of an IP-set was introduced in [4] (see also [3]), and it was shown in 

[6] that a subset A of Z contains an IP-set iff A is a neighborhood of an 

idempotent in /3Z\Z.  We say that A is an MIP-set if A contains a minimal 

idempotent. It follows from [6] that A is MIP iff it is central in the terminology 

of [3] (see definitions below). We use these characterizations to prove Theorem 

4. 
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THEOREM 4. (1) The collection of IP-sets considered as a subset of 1)2 is 
Souslin. 

(2) The collection of MIP-sets is Souslin. 

In section 2, we prove Theorem 1. Theorems 2, 3 and 4 are proven in section 3. 

We also give there an example of an algebra sr C l = for which ~ has the 

property that Z is the union of a finite number of sets in ~r The question 

whether such an algebra exists was posed in [6]. 

w Small sets 

Let 122 = {0, 1} ~, we consider 122 both as a flow under the shift and as a compact 

topological ring under coordinate-wise multiplication and addition modulo 2. 

The following definitions and results are from [2]. 

A closed shift invariant subset X of D,z is restricted if X + Y = D~ for closed 

invariant Y implies Y = 122. Minimal subsets of (II2, cr) are restricted; moreover 

if M is minimal and X is restricted, then MX is restricted. Clearly, every finite 

sum of restricted sets is restricted, and we conclude that Z = ~;7"-1 MjIMj2 �9 -" Mjk, 

is restricted whenever the Mj~'s are minimal sets. Let R be the union of all 

restricted subsets of ~2, then R contains all restricted sets and, in fact, any closed 

invariant subset of R is restricted. 

Let Ro be the subring of 122 generated by the minimal functions in f~2 (i.e. 

~/fq 1),2, see Lemma 2.4). Then Ro C R and for every finite number of symbolic 

minimal flows X~ (i = 1 , . . . ,  n), x0 = (xl," �9 ", x,)  • 1-I~'=1X~ and a {0, 1}-valued, 

continuous function F on X the function f (n )=  F(T"xo) is in R0. (The latter 

statement follows from the simple observation that a {0, 1}-valued continuous 

function f on a symbolic flow depends only on a finite number of coordinates, 

say ~:~, l i I-_ < N and has the form 

f(s  c N,'" ",~N) = ~'~ a~ l'-I ~ 

where the aj 's  are 0 or I, the summation is modulo 2 and J ranges over the 

subsets of { - N , . . . ,  N}.) 

We shall use these results in the proof of Theorem 1(1); however, we first need 

some lemmas about 91. 

LEMMA 2.1. I f / E  91 then any pointwise limit of the form lim T",[ = g is also 
in 91 ( T f ( k ) = f ( k  +1)). 
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PROOF. Since f G 92 it can be approximated uniformly by linear combinations 

of the form ZT=I~,-.  ",~kj where the/jr are minimal functions. Each pointwise 

limit of the form lim T"'~t is minimal and our lemma follows. [] 

We recall that the pointed product of two pointed flows (X, xo)v(Y, yo) is the 

subflow ~(Xo, yo) C X • Y. Likewise if (X~, x~) is any family of pointed flows then 

V (X~, x,) = (X, x) is the orbit closure of x E FI X~ where x is the point whose i-th 

coordinate is x,. If M, is the algebra corresponding to (X~, xi), then the algebra M 

which corresponds to (X,x) is the smallest algebra containing all the M~, i.e. 

M = V M ~  and [ M [ = X .  

LEMMA 2.2. Let (X, xo) be a pointed metric minimal flow, then there exist 

pointed metric minimal flows (X, ~o) and (Z., z,) where each Z,  is a subflow of 
~2, such that ( . ,~ ' , s  and there exists a homomorphism 

(X, ~o) ~ '  (X, Xo) with ar-'(Xo) = {.to}. 

PROOF. Let {U.}.~N be a basis for the topology of X such that dU~ N ~7(Xo) = 

b'n E N. Let f, (k)= F~ (Tkxo) where F~ is the characteristic function of U,. 

Consider f.  as an element of 1~ and put ( ~ ( f , ) , f , ) = ( Z . , z , ) ,  (.~,$o) = 

V.~,~(Z., z~). 

Define ~r : X--> X as follows: given :~ ~ X  there exists a sequence {n~} with 

lim T",s = :~, let 7r(:~) = lim T",xo. We have to show that (i) the limit exists and 

(ii) the definition is independent of the particular sequence {n, }. We shall prove 
(i) and (ii) by showing that whenever {n',} and {n';} are sequences such that 

lim T"~o = ~, lim T";xo = x' 

and 

lim T"~o = ~, lim T"~xo = x" 

then x ' =  x". Suppose x ' r  x", then there exists Uo with 17, (x')= 1, F, (x")= 0 

and such that x'  and x" are continuity points of F.. Then 

1 = F.(x') = limF.(T"',xo) = lim f. (n'i) = ~c.,(0) 

and also 

0 = F, (x") = limF,(T"',xi) = lim f. (n'~) = ~t.~(0) 

(where ~.~ is the projection of :~ on Z.) ;  this is a contradiction. Thus x'  = x" and 

ar is well defined. Clearly, 7r($0) = x0 and ~-(T~) = T~r(.~) for every ~ E X'. 

Next we check the continuity of 7r. Let :~ = lim~, in ,~, and write x. = ~r(~.), 

x = 7r($). Suppose for some subsequence lim x., = x'. By definition of ~r we can 
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choose m, such that T%G is close enough to .f,, and T",xo is close enough to 

x., = zr(.f,,) so that lim T",.fo = ~ and lim Tm,xo = x'. But the definit ion of ~r also 

implies that lim T'~.xo = x = 7r(.f) so that x = x '  and ~r is cont inuous.  

Let  .f E X with ~r(~) = xo. Choose  n, such that  limT",~o = .f, then for every  j 

and k, by cont inui ty  of Fj at Tkxo, we have 

.fu,(k ) = lim Fj ( T k mxo) = F, (Tkxo) = Y, oo)(k ), 

i .e . . f  = f0. This shows that 7r-'(xo) = {.G} and an easy a rgument  now implies the 

minimality of 3~ = ~(.~o). The  proof  is complete .  [ ]  

LEMMA 2.3. There exist pointed minimal subflows (X~, x~) of l-l: such that 
1 92 1 = V (X~, x~), and hence 1 92 1 = V (X~, x~) where (X~, x~) ranges over all 

minimal subflows of 1)2. 

PROOF. For  every  f E d ,  t let (Xf, f )  be the pointed metric minimal flow 

( ~ ( f ) , f )  where  ~ ( f ) c [ - I l f l l ,  Ilfll]". Clearly 192J=V{(Xf, f ) : f @ d l } .  By 

L e m m a  2.2, there  exist minimal almost  one- to-one  extensions (3~r, f ) - ~  (Xr, f )  

where  for each f E rid, .~'f = V,~N Zr., and Zr., CO:.  Let  92' be the algebra which 

corresponds  to VI~-~ V, -NZu = VI~:.,3~I; then 92' =92 and we conclude that  

1921= v v z,.,. [ ]  

LEMMA 2.4. Every function in 92 whose range is in {0, 1} is an element of Ro. 

PROOF. Let  f : Z---* {0, 1} be in 92, let F E C(192 J) with f (n )  = F(T"xo). Put 

u, ={x  1921:F(x)= E} (e =0,1). 

By L e m m a  2.3, J921 = V (X. ,x~)  for some family of minimal subflows of D.z. 

Since U0 and U~ are c lopen sets F depends  only on finitely many  coordinates ,  

say a , , ' " , a N .  Thus we can consider  F as a cont inuous  funct ion on 

j~, (X,,, x. ,)  = (X, Xo) with f (n )  = F(T"xo) Vn E Z and thus f E Ro. [ ]  

Suppose A E ~r but  not small. Define 3, ~ Aq. = PROOF OF THEOREM 1(1). 
{0, * }z by 

* n E A ,  
3 , (n )=  0 nff_A. 

Since A is not small we can find ~: E C(y )  such that s c is minimal and ~ 0. Let  n~ 

be a sequence  with lim o' '3,  = s c. Le t  B, = [~r - n ) , . . . ,  sO(n)] be the sequence  of 

central  blocks of ~. By the minimali ty of ~, passing to some subsequence  of n~, we 

can find a sequence m~ ,7 ~ such that: 
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(1) In B,,, there are 22",-,*' disjoint appearances of B .... . 

(2) The intervals I n , -  rn,, n, + rn,] are disjoint. 

(3) o " , y l [ - m , , m , ] = B , , , = ~ l [ - m , , m ,  ]. 

By induction we define an element ~ E1"~2 as follows. Let rt I [ n , - m , ,  

nl + ml ]  be identically zero. Suppose 17 has already been defined on L ~= 

[n,_~-m,_~,n, ~+m,_,]; we next define 7/ on L = [ n ~ - m , , n ~ + m , ] .  Consider 

B,,. ; we are going to change all *'s in B,., into zeros and ones (however, we 

never change zeros). The central (2mi - l  + I)-sub-block of B,,, we change into 

1"/ I [n i - l  -- mi - i ,  hi-1 + ??li-l]. (By  induction hypothesis this does not change zeros 

into ones.) 

There are now at least 2 2", ,§ - 1 disjoint appearances of B,., , left in B,.,. If 

there are r, *'s in B ....  (r, <= 2m, , + 1), then there are 2', possible replacements 

of stars into zeros and ones; and we put all these replacements in the 2 2"  ̀ , + 1 

disjoint appearances of &., , in B".. On the rest of B,., we now replace all *'s by 
zeros. Let/~,,, be the new block of 0 and 1 thus obtained, then define r/ I/,  =/~,-,. 

This defines "q on I = UT-, L. Define r / o n  Z \  I to be identically zero. We clearly 

have lim tr",T/= 0 for some 0 E 122. 

Next we show that 0 ~ 2[. Since A is an Pl-interpolation set, there exists f E ~)I 

with f I A = 77 I A. By passing to a subsequence and then relabelling, we can 

assume that l i m T " , f = g  exists and by Lemma 2.1 g E.Ol. Put D =  

{n E Z:  sO(n)= *}; then 1~ is a minimal function (hence in ~l) and recalling that 

the support of ~/, i.e. the set {n : ~/(n) = 1}, is contained in A, we have 

0 = lim o'",r/= lim O'"'(1a " 77) = lim T " i ( l a  " f )  = 1D "g. 

Hence 0 ~ I .  By Lemma 2.4 0 E R o  and we conclude that X = ~ ( 0 )  is a 

restricted subset of ~2. Define 

Yo= {y Ef t2 :  y ID---0} 

and let Y be the smallest closed invariant subset of ~2 containing Yo. Since lt~ is 

minimal and D #  Q5 it is clear that Y #  l~z. On the other hand, the construction of 

0 ensures that for every finite subset {kt,. �9 k,} of D and a sequence e,," �9 -, e, 

where El = 0  o r  1, there exists an m with TmO(k~) = e~, i =  1 , . . . , n .  It follows 

that X + Y = 1~2. This contradiction shows that A E #.~ can not be small and the 

proof is complete. [] 

REMARK. Let M be an algebra of minimal functions. We can see directly that 

#~ consists of small sets. In fact it is an easy exercise to see that if A is not small 

and (X, Xo) is a pointed minimal flow, then 

V = int{T~o: n E A } # Q .  



VOI. 44, 1983 INTERPOLATION SETS 353 

Therefore,  there exists k E A  with Tkx~E V and if X is infinite, we can 

conclude that {T"Xo},~A accumulates at Tkxo. Applying this result to the minimal 

flow ([ ~/[, x0), we immediately see that A can not be an ~r set. 

PROOF OF THEOREM 1(2). Let A C Z be a small set. Again we use ~ ,  = {0,*}z 

and consider ~: ~ ~l. defined by 

* n E Z \ A ,  
~(n)=  0 n E A .  

The fact that A is small means that for every k there exists an Nk, such that in 

any block of length Nk in ~, there is a sub-block of k consecutive *'s. 

For a block B we let I B I be its length. We are going to distinguish certain 

sub-blocks of s c consisting of only stars, which will be called niches of order  1, 2, 

3, etc. A pairwise disjoint subfamily of niches, called the skeleton ~, will be 

further distinguished with the following properties: 

(i) All n~niches have a common length t,. 

(ii) For every n the gap between any niche in 5e of order  => n and the next 

niche in ow with order _-> n is =< 2N,.. 

We shall distinguish as well a sequence of blocks B2, B3, �9 �9 �9 of ~: such that: 

(a) The domain of B, contains the interval [ -N, ._ , ,  N,. ,]. 

(b) lB. l= t.. 
(c) B, begins and ends with ( n -  1)-niches belonging to the skeleton. 

Note that these conditions imply that the n-niches of the skeleton are disjoint 

from B,. 

Once these constructions are accomplished we can conclude the proof of the 

theorem as follows. 

Let there be given an arbitrary function q~ : A --o {0, 1}. We define an element 

so, U{0,1} z with the property that so, ]A =W and such that r is a minimal 

function. 

Our first step is to define G on the domain of B2. We set G ( k )  = ~p(k) if 

s  = 0 (i.e. if k E A ) and otherwise our choice is arbitrary, say ~:, (k) = 1 for all 

other k in the domain of B2. 

In any niche of order two in 5e we define G to coincide with its definition on 

B2. 

Next we define so, on what is left of the domain of B3. Whenever  ~:(k) = 0 we 

let G ( k )  = 9(k) .  On the domain of B2 and on those niches of order  2 in 5e which 

are contained in B2, G is already defined; and we define it arbitrarily on the rest 

of the domain of B3, for example, by putting 1 everywhere. On every niche of 



354 S. G L A S N E R  A N D  B. WEISS Isr. J. Math. 

order 3 in b ~ we let ~, coincide with its values on B3, etc. Since the union of the 

domains of the/3, 's is all of Z, this inductive definition yields an element s% E 1"12. 

By induction from B~ to B~+t, starting with B,+~ and using properties (ii) and 

(c), we see that the block - -  ~% I domain of B, - -  appears in ~ with gaps < 2N,. 
This proves the minimality of ~.  

Moreover, since the skeleton structure is independent of q~, it is clear that for 
every e > 0 the set 

{n ~ z :  d(~"~,~)< E, V~ ~/0,1} ~} 

is syndetic; i.e. the point x,,=(~%)~co.,rA is an almost periodic point of the 

pointed flow (X,x,,) = V{(~(~%),~%): ~o E{(), 1}A}. This means that (X, x0) is a 

minimal flow and the corresponding algebra sr clearly contains the family 

{~}~,-io.,~A. It follows that A E..r and our proof will be complete when the 

construction of the skeleton of niches and the sequence B2, B 3 , ' "  is accom- 
plished. 

We now turn to these constructions. 

Niches of order 1. These are all blocks of stars of length one in s r We denote 
this family of niches by 2r 

Niches of order 2 and the block B2. Let B2 be a sub-block of s c whose domain 

contains the interval [ -  N~, N,] which begins and ends with a 1-niche (i.e. with 

stars). We let our second order niches (or 2-niches) be disjoint blocks in s r of 

length l Bz I = t2 of consecutive stars, disjoint from B2, and such that every block 

of length N, 2 in ~r contains at least one such block. We denote the family of 
2-niches by .N'z. 

Suppose that Bk and the family N~ of niches of order k have already been 
constructed for k _-< n. 

Niches of order n and the block Bn§ Let B,§ be a sub-block of s c whose 

domain contains the interval [ - N,., N,.] (where t. = [ B, 1), which begins and 

ends with n-niches. We let our (n + 1)-niches be disjoint blocks of t,§ = t B, . ,  I 

consecutive stars disjoint from B,~I, such that every block of length IV,.., in s r 

contains at least one such block. We let 2r be the set of (n + 1)-niches. 

This completes the inductive construction of niches of all orders. 

Next we define a triangular array N~ ) (k = n) of families of niches. For every 
n we put N~. "~ = N,. 
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Suppose 
N]') X~21 �9 o . 

�9 o . 

have been defined; we now describe ~..At~"*'l, ~,fr . . . ,  N~-, u, ? ( ] ~  ?r is 

obtained from 2r by the omission from r162 of every niche which is either 

~ ( , - u  by contained in or intersects an element ,~, "~ ~,~"'.+, ~. ~,~"+1)._1 is obtained from . . . .  i 

the omission from 2r of every niche which is either contained in or intersects 

a niche in r  'J = . . . .  , U?r ~1~. Suppose 2r has been defined for l < k < n + 1; we 

let 2r "+~ consist of all niches in ?r which are neither contained in nor intersect 
( n + l )  niches in U r L + l ~ ' - ' : k > l f f k  �9 

This completes our inductive construction of the triangular array. 

To define the skeleton 5e, we want to check that on the domain of B., 

N~ "J = 2r for all m = n, and all j =< n - 1. This is easily seen by a descending 

induction on j f rom n - 1 down to 1 using the fact that no niche of order  _-> n can 

intersect the domain of /3,. 

For each n let 5e, be the set of niches in UT_-] N~ "~ which lie in the domain of 

B, and let 5r = U~_2 5e,�9 

Clearly our skeleton consists of pairwise disjoint niches. Property (ii) of 5e 

follows from the fact that it holds in each 5ek. This completes the proof of 

Theorem 1(2). 

Part (3) of Theorem 1 now follows from parts (1) and (2). In fact, the proof of 

part (2) shows that the small sets are interpolation sets for the collection M of 

minimal functions in l ~, which generates 2[. Part (1) shows that only small sets 

can be in 5~.~. 

w Ideals and interpolation sets 

We recall some elementary facts about flZ. One can view the elements o f /3Z  

as ultrafilters on Z where n E Z is identified with the ultrafilter {A C Z : n E A }. 

Given A CZ its closure in f lZ is given by A ={pEflZ:A Ep}. The sets 

{A : A  C Z} form a basis for open sets in /3Z and .4 N Z = A. 

Every map q~:Z- -~X where X is a compact  Hunsdorff  space can be 

continuously extended to /3Z. In particular an f E /~(Z)  can be uniquely 

extended to flZ. We shall identify f with its extension�9 In terms of this 
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identification it is easy to see that A C Z is an M-interpolation set itI the 

functions of M separate points of fi, C/3Z. 

The map n --* n + 1 of Z into fl Z can likewise be extended to a map, which we 

denote by T, of /3Z into/3Z. Clearly (/3Z, T, 0) is a pointed flow and, in fact, it is 

a universal object for pointed flows. In a similar way, addition in Z can be 

extended to "addit ion" in/3Z which makes f lZ a semigroup. For details we refer 

to [1], [5] and [6]. 

PROOF OF THEOREM 2 PARTS (1) AND (2). It directly follows from the definition 

of K and ~ ( K )  that `9 C#~K). 

If A is a ~(K)-interpolat ion set but A ~ # ,  then ,4 n K#~5.  We now show 

that ,,~ N K is a singleton. Suppose p,q E ,4 n K and p #  q. Choose B,, B~ CZ 

such that /30 and /3~ are disjoint neighborhoods of p and q, respectively. We 

define 9 :A--*{0, 1} by 9 I Bo O A ---0 and 9 I B, n A ~ 1 and on the rest of A. 

9 is arbitrary, say 1. We can find f E ~ ( K )  with [ I A = 9. But then [(p) = 0 and 

[(q) = 1 contradicts the fact that functions in ~ ( K )  do not distinguish between 

points of K. 

Thus .9 C`9~tm and if ,9#,9~tm, then K has an isolated point, since IT, is 

clopen. 

We now assume that K has an isolated point, say {p} = ,~ n K for some 

A CZ. We shall show that ,9 cannot be the ideal of M-interpolation sets for any 

algebra M. Assume # = `ga, then since A E `9 we also have A E #a. This means 

that there are points ql, q2 E fi, such that q~ # q2 and f (q , )= f(q2) for every 

f @ M. If both ql • p and q2 # p, then we can find basic disjoint neighborhoods 

/~l and /32 of q~ and q2 which are disjoint from K. Then B = B~ O B: E `9 and 

h e n c e B E # a .  Define 9 : B ~ { 0 , 1 } b y 9 1 B , - = I ,  9 1 B 2 ~ 0 a n d c h o o s e f E M  

with f I B = 9, then f(ql) = 1 and f(q2) = 0, a contradiction. 

Thus we can assume that there is at most one point q ~ ,4 such that p # q, M 

does not distinguish between p and q and such that M separates all other points 

in .4. Le t / 3  be a basic neighborhood of q disjoint from K, and let A '  = A \ B. 

Then A '  is an M-interpolation set (M separates points on 5, ')  and A ' ~ ` 9  

because p E fi,' N K. This contradiction completes the proof. 

We complete the proof of Theorem 2 with an example of an invariant ideal for 

which K contains an isolated point  

Let A = {n~}7=~ be a sequence such that n~ ~ oo and n~+t - n~ ~ ~. Let p be an 

ultrafilter on Z containing A (p E ,~) .  Put 

, ~ = { B  CZ: 3 F E p  and ::1 a function k : F---~N; 

f ~ k t, such that k t --* ~z when If  [--> oc 

and V f ~ F  I f - k , ,  f + k ,  l c /3} .  
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If Bl and B2 are in ~, F,,/:2, k ~1) and k ~:), the corresponding sets and functions, 

we put F = F~ N F2, kf 1.w and then = min (,~t , k~ -~) 

B, N B 2 D B =  U [ f -k t ,  f+kf]  and B, N B 2 E ~ .  
f ( iF  

Thus ~ is a filter. Given B @ ~ and an integer l, we find a set F E p  and a 

function kt on F corresponding to B and then for large If  I, we have 

B + l D [ f  - k 1 + l l [ , f  +k / - I l l ] .  

Thus ,~ is invariant and clearly ~ Cp (i.e. p E K -- n {,~: F E ,~}). 

Suppose now that q E K N A  and let F G p .  If F ~ q ,  then A \ ( F N A ) E q .  

We can find a function k : F n A - - ; N ,  f ~  k t and k t ,7~ such that F N A = 

B N A  where B = Ut~.na[f -k t ,  f+kt].  
Now by definition B @ ,~, hence 

Q =  B N[A \ ( F N  A)] = B N[A \ (B A A ) ] E q  ; 

a contradiction. Thus p C q and hence p = q, i.e., we have shown that K N A = 

{p} and p is an isolated point of K. []  

We now turn to the proof of the corollary to Theorem 2. It is shown in [6] that 

for the ideals described in (1), (2) and (3) of the corollary, the corresponding 

kernels K are the sets: 

K, =closure  ( U { M : M  is a minimal ideal in flZ}), 

K2 = M, a minimal ideal in flZ, 

K3 = closure ( U {Supp/~ :/~ an invariant probability measure on /3Z}), 

respectively. 

All we have to show is that none of these sets can have an isolated point. For 

K2 this is clear because M is a minimal set of the flow (/JZ, T). Similarly, if A CZ 

and A n K, ~ Q, then since A is open, we have for some M, minimal ideal, 

Q ~  M N 5, D ,  ft. n KI and again the same observation applies. Finally if 

5, A K 3 ~ O  then Q f i , 4 N L C f i .  NK3 for some closed invariant subset L 

which is the support of some invariant probability measure ~ on flZ. But then 

/~(A n L)  > 0, and in particular fi~ n L cannot be a singleton. [] 

PROOF OF THEOREM 3. (1) Suppose first that A E 5e(M). Let n E clsj,A (the 

J~-closure of A) ;  i.e. in the pointed flow (Is~l ,T,  xo ) we have T"xoE 
{Tkxo: k ~ A } .  Then x o E { T  k "xo: k E A }  and since (A - n )  O K = Q, this 

implies that 0 E), t  - n, i.e. n E A, and A is J~ closed. 
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If n E A let B = A \{n}, then B E 0~  hence B is J~ closed, in particular 

n C cl%,B and n is an isolated point of A in the relative 3~ topology. Thus A is 

J~ discrete. 

Conversely, if A C Z is J.~ closed and discrete and for some n, A + n n  

Ko ~ •, then T " xo E { Tkxo : k E A} and - n E cls~/~. Since A is J~ closed we 

have - n E A and this contradicts the J~ discreteness of A. Thus A @ 5e(~/). 

(2) This follows from (1) and [6, th. 5.1(1)]. 

(3) It was shown in [6, th. 5.1(2) and (3)] that (i) implies (ii) and that (ii) 

implies that every ,ff interpolation set is J~ closed and discrete. Thus by (I) 

either (i) or (ii) implies J~  C 5r162 

Assume (iii) and let A E ~ .  Then .,~ n Ko is not a singleton. If fi, n K0 is not 

empty we can find disjoint sets A0, A1CZ with A = AoUA~ and such that 

,~on K ~  and 5,, n K ~ .  Define q~ :A ---~{0,1} by q~ }Ao~0,  q~ IA,-= 1. Let 

f E ~r with f I A = q~, then f assumes two different values on Ko in contradiction 

to the fact that f E ~/. 

(4) We merely have to notice that the filter ~: and, therefore,  the set Ko are 

the same whether we take our algebra to be ~/ or ~ because J~ = J~. Thus 

O~ = ow(~/). Also by [8] if ~/ is Souslin so is ~/. 

This completes the proof of Theorem 3. [] 

Before proving Theorem 4 we recall the following definitions and results from 

[4] and [6] (see also [3]). As was noted before, (/3Z, T, 0) is the universal pointed 

point transitive flow; i.e. for every pointed flow (X, xo) there exists a unique 

homomorphism q~ : flZ---~ ~?(Xo) with q~(0) = Xo. We write q~(p) = pxo, and one 

can think of pxo as the limit of the ultrafilter {{T"xo},EA}A~p. This defines an 

"act ion" of the semigroup/3Z on any flow X;  for p, q E /3 Z  and x E X we have 

p(qx)  = (pq)x. If u is an idempotent of f lZ then ux is always proximal to x, since 

u ( u x  ) = ux. 

For A C Z  and p ~ / 3 Z  we write p * A = { n E Z : T " p E . 4 }  = 

{n E Z : p G A - n}. It is easy to check that when la  is considered as a point of 

the flow (112, ~)  then lp.a = plA. 

Let  {i,}7=1 be a sequence in Z, for any finite subset c~ of N we let i~ = Y~,~i. 

and we write IP({i,}~=~)={i, : a  a finite subset of N}. IP({i.}7=0 is called an 

IP-system, and a subset A CZ is called an IP-set if it contains an infinite 

IP-system. A set A CZ is an IP-set iff .4 in/3Z contains an idempotent ~ 0 ([6]); 

A C Z is called an MIP set if .if, contains a minimal idempotent,  i.e. an 

idempotent which belongs to some minimal ideal. A is an MIP set iff there exists 

a subset B CZ such that, 0 ~ B, lo is a minimal function and 1A is proximal to 1~ 

in (flz, or) Off A is a central set in the sense of [3]). 
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Finally if (X, T)  is a flow and IP({i ,}~_,)= {io} is an IP-system, then we write 

IP-lim T'ox = y for x, y E X, if for  every  ne ighborhood  V of y there  exists an N 

such that  for every  a, a finite subset of {N + 1, N + 2, �9 �9 �9 }, T'ox E V. 

PROOV OF THEOREM 4. (1) We first notice that if x is a recur ren t  point  of a 

flow (X, T),  i.e. if there  exists a sequence  {n~} with ]n~ I 2" oo such that lim T",x = 

x, then for some subsequence  {n~,} the cor responding  IP-system IP{n~,} = {na} 

satisfies IP-lim T"ox = x. 

Now a subset A C Z is an IP-set iff there  exists an idempoten t  u ~ 0 in ,s itt 

0 E  u *A .  Let  u * A  = B, then in (lie, a ) ,  U l A  = u l .  = 1.. Thus,  la is proximal  

to 1B which is fixed under  u and satisfies 1B(0)= 1. 

Converse ly  if A C Z  is such that for  some sequence  ni (I n~ I 2' or lira tr", 1a = 

1 . = l i m o ' " , l .  and 1 ~ ( 0 ) = 1 ,  then we also have I P - l i m t r " o l a = l R =  

IP-lim tr"o 1. for  some IP-system {n~} = IP({n~}), genera ted  by a subsequence  

{n,,} of {n~}. But then for some N and every  finite set a C { N + I , N + 2 , . . - }  

o ' " ~ l a ( 0 ) = l a ( n a ) = l ~ ( 0 ) = l  and n , , C A .  

So that A is an IP-set. 

Write  

W ={(~: , '0)EfL,•  with In~ 12"oc and 

lim ~r",~: = ~: = lim o'",r/; ~:(0) = 1} 

= n U n { ( ~ , r l ) : ~ ( k + j ) = ~ ( j ) = r l ( k + j ) ; ( ~ ( O ) = l } .  
n ~ N  I Ikl>n [jl~n 

Then  W is a Borei  subset of f~2xf~2 and 7 r 2 W = { 1 A : A  is an IP-set} is 

Souslin. 

(2) The  same proof  will work for 

W = {(so, r / ) :  ~ and 7/ are proximal,  ~: is minimal and ~:(0) = 1} 

= n u n u u n {(~,r/ ) :sC(l-m+j)= 
n C N  d E N  IC_Z 0 " ~ n a ' ~ d  k ( . Z  i l i o n  

~:(j) = ~:(j + k)  = r/(j + k);  ~(0) : 1}. [ ]  

We conclude with an example  of an algebra ag C l = such that  a r  l = and such 

that there  are A, B ~ 5 ~  with Z = A U B .  (In the te rminology of [6] the 

collection ~ = {A C Z : A ~ _  . ~ }  is not quasidivisible.) 

Put 

A = 0 [2",2" + 2 " - ' - 1 ] ,  B =  U [2" + 2 " - 1 , 2 " ' 1 - 1 ] ,  
e t = l  n = l  
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and let 

~do = { f  E l~ : 3 N  s.t. for n > N and N < j < 2~-~ - N,  

f(2" + j )  = f (2"  +2"- '  +/')}. 

Clearly Mo is a translation invariant subalgebra of l ~ containing the constant 

functions. Let M be the uniform closure of Mo in I x. Then M is a proper 

subalgebra of l ~ and A, B E ,~r 

PROBLEMS. (A) For a minimal idempotent v let ~ (v )  be the corresponding 

maximal algebra of minimal functions. Is ,,~,o) an ideal? Is this the ideal of small 

sets? 
(B) Let  2e = n {~l(v): v @ J} (where J is the set of idempotents in a fixed 

minimal left ideal in 3Z) ;  this is the algebra of point distal functions. Is .r an 

ideal? 
As was shown in [6] A ~.r cannot contain an infinite IP-set. Does .r 

coincide with the ideal of sets A that do not contain a translate of an infinite 

IP-set (or an MIP-set)? Can the latter ideal be represented as .r for some 

algebra M? 
(C) In the content of Theorem 3, is the condition "Ko  contains no isolated 

points" necessary for the conclusion that .r = ~ (M)?  
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